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H E A T  E X C H A N G E  O F  A N  I M M O V A B L E  F I L T E R E D  L A Y E R  W I T H  

IMMERSED SURFACES IN A TWO.COMPONENT M O D E L  

O F  H E A T  T R A N S F E R  

V. A. Kalender'yan, V. R. Gappasov, and O. L. Ovcharenko UDC 536.27:66.045.1 

Solutions for the problem of steady-state heat transfer in an immovable filtered layer with immersed surfaces are 

presented Use is made of versions of a two-component homogeneous model differing in the ways of considering heat 

exchange between the layer components and the immersed surfaces. The results predicted by both versions are 

compared to one another and to experimental data, and the range of applicability is identified for each of them. 

Relations describing heat exchange of the layer components with a staggered tube bundle are given. 

One of the important problems of the theory of dispersed media, which are heterogeneous systems, is a formulation of 

the heat-transfer models which fairly correctly describe real processes and are suitable for thermal calculations of various devices 

(chemical catalytic reactors, apparatuses for thermal treatment of dispersed materials, heat storage batteries, etc.). Diversity of 

structural, geometric, and operating characteristics of the dispersed systems and a simultaneous action of different transfer 

mechanisms make it reasonable to employ a formalized description based on a continuum approximation. The description is 

valid given that the characteristic internal scale of the medium is much smaller than the temperature field scale. Within the 

framework of such an approach, each component of the dispersed medium is regarded as a continuum with effective 

thermophysical characteristics, and their interaction is taken into consideration by appropriate transfer coefficients. The problem 

gets complicated when heat-transfer surfaces, providing a required temperature mode, are immersed in the dispersed medium. 

The current paper reports a two-component continuum model of heat transfer with reference to one of the variants of 

dispersed systems, viz., to an immovable blown-through layer with immersed heat transfer surfaces, as well as relations for a 

temperature distribution of components derived on that basis. Two model versions, differing in the way of taking into account 

the heat exchange with the immersed surfaces were compared. The heat transfer process was considered in a one-dimensional 

approximation, with allowance for the following mechanisms: longitudinal conduction in gas and solid components, characterized 

by the effective axial coefficients of thermal conductivity )l.g and )l.so I , respectively; convective transfer by a gas component; and 

intercomponent exchange, defined by the gas-particle heat transfer coefficient a i. The first version (model 1), as in [1, 2], took 

account of the heat exchange with the immersed surfaces for each of the layer components with the aid of relevant heat transfer 

components ag and a s. The second version (model 2) adopted a known (for example, [3, 4]) assumption of a negligible par- 

ticle-surface contact area, which enabled us to disregard the heat transfer of the solid component. It was assumed in both cases 

that the porosity distribution and the gas velocity are uniform over a layer cross section, the heat transfer surfaces are located 

uniformly throughout the layer, and the thermal conductivity and the heat transfer coefficients are invariable. 

For the first model version, a system of equations describing the steady-state heat transfer has the form: 

Odessa Institute of Low-Temperature Technology and Power Engineering. Translated from Inzhenerno-Fizicheskii 

Zhurnal, Vol. 63, No. 1, pp. 63-68. July, 1992. Original article submitted July 9, 1991. 

700 1062-0125/92/6301-0700512.50 o1993 Plenum Publishing Corporation 



. . . . .  -- -- -- @ S E S  I g ~ -  0 ,  dx 2 ~ 8 dx , 

. �9 d 2 ~ s o ~ _  
Zt~ol(1 - ~'~-Gz-x~ ~ a  (1 - ~)  ( % -  G o D  - ~ &:Go~:= 0. 

(1) 

(2) 

The boundary conditions at the layer entrance are given by 

x = O, 6g = fig0, e ,  = fisolo. (3) 

A limitedness of a temperature rise in the layer at infinity was taken as a supplementary boundary condition. 
$ 

A solution to the problem (1)-(3) is obtained using the asymptotic method of perturbations by small parameters Aso I , 

treated in [5]. The temperature fields in the layer components are defined as 

e )g=  exp (AX), (4) 

, e x p ( - - X  l / /  (1 - t -y )  d 2 / _ _ e x p ( A X  ) 
8~ i (5) exp - - X  i / /  ( l + ? ) d  "z ] 

Oso ( =  
- , [ t  8 M / ! 1 +  y - - G I A  2 

where 

i/ �9 O~s~ ) A - -  Pe,~ (Pe~*)___~z _/_d~(1 - i -?)(c tgEs(1 - + - ? ) +  ,s , s . .  (6) 
2 4 (~ (1 -~-y)~  ,+ * z,,~o~ ) ( l  - -  I~) 

P e * =  (/,~ (1 + V) 2 -t- ~ o l )  (I --151); (7) 

sol~ 
C~ s FS 

~ ' -  ~,,a (1--132) ' (8) 

.. Lsol( t  - -  {2.,) . (9) 
~" = ~, , ,~,z( i  - -  I$~)d ~ ' 

x ( l O )  ~ \  = = - -  . 

d 

The complexes 7 and % and the modified Peclet number characterize heat flux relationships, specified by various heat 
transfer mechanisms. 

When the intercomponent heat exchange in the layer is much larger than the heat transfer by heat conduction in the 

solid component and than the heat exchange of the solid component with the immersed surfaces, a temperature slip between the 

gas and particles virtually vanishes, and it is possible to employ a one-component model which considers the layer as a homoge- 

neous medium with effective characteristics. Thus, the conditions for conversion of the two-component model to that one-com- 
ponent are as follows: 

?<( 1, (11) 

8~,, << 1. ( 1 2 )  

The assumption of a negligible contact area of the solid component particles and immersed surfaces, made in the second 
model version, allowed the heat exchange of the solid component with the surfaces to be ignored " sol tc% = 0) in Eq. (2). In this 
case, a solution for the problem (1)-(3) is 

Og = exp (RX), 

d. z 
e x p ( - - X  r  ) - -exp(RX)  ( 

(13) 

(14) 
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where 

l/ asFs,d' (15) R -- Pe* " (Pe*).__~ ~ + * ; 

2 4 (k~!-I- Z,sol)(1--131) 

Pe* GgCprd 
(~ ,  q- Z*ol) ( 1 _ 131} (16) 

When the heat exchange of the solid component with the immersed surfaces is negligible as compared to the inter- 

component heat transfer (i.e., with 7 << 1), and 

a g i _  sol  
a s ' =  s-+- Us~ (17) 

Eqs. (4) and (5) go then, correspondingly, into Eqs. (13) and (14), and the temperatures predicted from the two model versions 

are actually identical. 

Calculations by the presented relations necessitate information regarding the heat transfer characteristics. Extensive data 

on the intercomponent heat-transfer coefficients are reported, for instance, in [6, 7]. A number of recommendations are known 

for computing the effective axial coefficients of thermal conductivity for the components of a densely packed blown-through layer 

(for example, [8, 9]). The data on the coefficients of heat transfer with immersed surfaces pertain to a layer as a whole, i.e., they 

are applicable only to the one-component model [10-14]. No information as to the heat transfer coefficients for components asg 
and as s~ is available in the literature. To determine them, the authors worked out methods based on solving an inverse problem 

of heat transfer and performed experimental investigations. 

Conditions in a test stand were set up in accordance with the assumptions under which the calculational relations were 

derived. Experiments were conducted with staggered bundles of tubes without finning. Monodispersed layers of glass or corun- 

dum spherical particles 2.95-9.3 mm in diameter were used. Characteristics of the immersed surfaces were the following: F s = 

23.4 m2/m 3, D = 0.0335 m, flJ = 0.5, and/32 = 0.195. The layer was blown through by air of temperature 10-30~ The data on 

the heat transfer with the staggered tube bundle for 25 < Re _< 1200, SffD = 2, S2/D = 2, 3.6 _< (S 1 - D)/d < 11.36, 3.6 _< (S 2 - 

D)/d < 11.35, and 28.11 _< 2sol/2g < 415 are described, with a probable error of • by the following correlations, corre- 

spondingly, for the gas and solid components 

(18) Nu gi-- 3,08 Re ~ (D/d)O. 16, 

NuS~ 0,27 Re ~ ,44 (D/d)O. 1~ (~,,sol/~sol)0, a3. (19) 

These data enable predictions using the first model version (Eqs.(4) and (5)). 

From the two model versions, the layer temperatures are calculated so as to be quantitatively compared at various 

Reynolds numbers and characteristics of the solid component. Furthermore, sensitivity of both model versions to the error, with 

which asg and aso I are determined, is evaluated. Discrepancy between the temperatures, computed by models 1 and 2, is estimat- 

ed using the relative temperature differences, viz., 6g= (tg 1 - tg2)/tg 1 for the gas component and 8so1= (tso n - tsol2)/tso n for the 

solid component. In calculations, the range of parameters and the characteristi6s of the immersed surfaces corresponded to those 

given above. An entrance temperature of the blown-through air was taken to be 30~ The quantities 2g* and )1so I , employed in 

predictions, were defined in conformity with [8], ~i was determined by recommendations of [7], %g and a s~ were obtained from 

experimental relations (18) and (19), and a s was found from Eq. (17). Figure 1 presents temperature distributions of the 

components along the layer height for two modes, in accordance with model 1. Model 2 produces similar results with definite 

quantitative differences. 

As the predicted results made dear, the Re number significantly affects 6g and 6so 1. Thus, at d = 9.3 mm,/lsol = 11 

W/(m .K), and x = 0.50 m, the values of 8g and 6so I comprise 5.7 and 14.3% for Re = 50, whereas these equal 1 and 5.8% for 

Re = 350. 
With increasing particle diameter, a rise in ~g and 6so I is observed. When the particle diameter varies from 2.95 up to 

9.3 mm for Re = 100, 2so I = 11 W/(m .K), and x = 0.17 mm, 6g grows from 5.7 up to 3.3%, and 6so I increases from 3.2 up to 

10.5%. 
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Fig. 1. Temperature fields of gas (a) and solid (b) components of a layer cal- 

culated from Eqs. (4) and (5) at d = 9.3 mm, 2so i = 11 W/(m .K); 1) for 

Re = 500; 2) Re = 50. 
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Fig. 2. Effect of the complex 1/y on discrepancy of temperatures corresponding to different models; 1) discrep- 

ancy of temperatures of a solid component calculated from Eqs. (5) and (4); 2) discrepancy of  temperatures of 

a gas component calculated from Eqs. (4) and (13); x = 0.17 m. 

Fig. 3. Comparison of  experimental and calculated temperature fields in a layer at D = 0.0335 m; SJD  = 2, 

S2/D = 2, d = 3 mm, and dashed curves denote calculated temperatures of gas and particles, respectively; dots 

mark experimental temperatures of gas and particles. 

As the thermal conductivity of the particle material increases, 6g and C3so I increase as well. Thus, with 2so I ranging from 

2 up to 11 W/(m .K) at Re = 100, d = 2.95 ram, and x = 0.17 m, 6g increases from 0.5 up to 1.4%, and 3T grows from 2.2 up 

to 3.3%. 

Consequently, at specified geometric characteristics of the immersed surfaces, the discrepancy of the temperatures, 

calculated from models 1 and 2 is a function of the characteristics of the layer components, Reynolds number, and longitudinal 

coordinate. The complex 7 (or 1/),), taking account of the indicated factors, can serve for a convergence criterion. 

As is evident from Fig. 2, which plots the relative temperature differences vs the complex 1/7, fig and 6sol increase 

noticeably with a decrease in this parameter. The values of 3g and 3sol in the region 1/7 > 30 do not, in fact, vary with increas- 

ing 1/7. 

Hence, a fulfillment of  the condition (11) (actually, 1/7 > 30 and 7 < 0.03) provides a satisfactory agreement between 

the temperatures predicted from models 1 and 2, with consideration of relation (17). The above condition is satisfied at large Re 

numbers and small 2sol, d, and x. 

703 



Figure 3 compares the temperature fields in the layer, computed by the model (1)-(3), to the experimental data obtained 

by the authors of the current paper (both model versions yield identical results for the experimental conditions). The comparison 

evidences a reasonable qualitative and quantitative agreement between the predicted results and experimental data, and, 

therefore, indicates that both versions of the model (1)-(3) adequately describe salient features of the heat transfer in the layer 

with immersed surfaces. 

The calculations demonstrated that the errors, with which the coefficients asg and as s~ are determined, have a substan- 

tial effect on the layer temperatures computed from both models. For example, for Re = 25, 2so I = 0.756 W/(m .K), d = 2.95 

mm, and x = 0.17 m, the component temperatures varied by 14% upon asg and as s~ changing by 10%, and these varied by 31% 

upon asg and c~sS~ altering by 20%. Consequently, inaccuracy in determining the coefficients of heat transfer of the components 

with the immersed surfaces can lead to noticeable errors in calculating the temperature fields. Experiments simplify significantly 

and produce a smaller error in obtaining the heat transfer coefficient as, rather than in estimating the heat transfer coefficients 

for each of the components asg and as s~ Therefore, with condition (11) observed, the second model version (Eqs. (13) and (14)) 

utilizing a s is more convenient to use for predicting the temperature fields. 

The presented data permit a substantiation of the requirements to accuracy of determining the coefficients of heat 

transfer with immersed surfaces and can be employed in devising the engineering methods to design bed devices. The problem is 

topical in view of a wide application of such devices and need for their optimization. 

NOTATION 

t, temperature; 0 = t - t s, excess temperature; (3 = 0/00, dimensionless temperature; ;t, thermal conductivity coefficient; 

p, density; Cp, specific heat; W~, filtration rate; G, mass flow rate; D, diameter of immersed surfaces; Fs, area of immersed 

surfaces per unit volume of layer; S1, $2, longitudinal and transverse pitches of tubes;/31,/32, portions of cross section and 
volume occupied by immersed surfaces; x, longitudinal coordinate; d, particle diameter; a, specific surface of particles per unit 

volume of layer; Re = WfD/v, Reynolds number; Nug = asgD/2g , NuS~ asS~ Nusselt number. Subscripts: g, gas; sol, 

solid; s, surface; 0, entrance section. 
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